

Inspired by your daily feedback and co-created
by our content committee of 13 experts, the first 100%

mobile focused Tech Radar. Take a look at
our third edition!

4 | Tech Radar #3 - November 2024

Introduction
While the mobile ecosystem has reached a certain level
of maturity, it remains extremely dynamic. Increase
in technology, frameworks, and SDKs presents complex
choices for any mobile team. In addition, multi-platform
support (web, TV, desktop) is becoming more extensive
and robust, encouraging code sharing between different
front-end applications. For years, we've been building
a knowledge base that we've decided to open so that
the community can benefit from our experience and insights.

5

This Tech Radar, co-created over the course of several workshops, is a snapshot of
the topics driving discussions within Theodo Apps' 3 tech tribes. The 13 members of the
Content Committee have been exploring the technologies and techniques that make
up the 53 Blips selected by our tech team. We invite you to discover and respond to their
points of view.

With the goal of publishing our vision of the mobile ecosystem, we made certain editorial
choices that strongly influenced the content:

• pass on our expertise: by talking about the technologies we use daily, that we have
experimented with or that we have been following for some time.

• not addressing obvious choices: certain approaches or technologies are clearly
adopted by a large majority of the community, sometimes even mentioned in a
technology's official documentation. If we feel that our opinion will not add value to a
technology, you won't find it on the radar.

• be clear about our recommendations: to provide you with the best possible guidance,
we have chosen to adopt clear, assertive positions.

This approach allows us to present our vision divided into 4 levels of recommendation,
based on our interpretation:

• Adopt: don't hesitate, in our opinion it's the best choice to date.

• Trial: we invite you to test this technology, as it has great potential for meeting your
needs. It can be integrated into a production project, if you have properly assessed
the risks and alternatives.

• Assess: we think this technology is worth keeping an eye on, as it is likely to gain in
importance over the coming months. It may be worthwhile to read up on the subject
or to carry out a "proof of concept”.

• Hold: we'd advise against this technology at this stage, either because we don't consider
it mature enough, or because we think it's less relevant than its competitors.

Although future developments may change the situation, we think it's best not to go down
this road for the time being.

We'd love to hear from you and look forward to exchanging our visions and technical
expertise!

6 | Tech Radar #3 - November 2024

SOMMAIRE

Our Tech Radar 8

Blips 9

Choising mobile technology 10

The quadrants
— React Native 12

— Flutter 26

— Native Technologies 42

— General 66

Our current stack 85

Contributors 87

About Theodo Apps 88

Our Tech Radar
In this 100% Mobile Tech Radar, we share our expert opinion

on the techniques, platforms, tools, languages and frameworks
associated with the main technologies we use every day:

React Native, Flutter, and native technologies.

RE
ACT N

ATIVE
FLUTTER

NATIVE GEN
ER

AL

1816

15

14

13

19

11

49

52
53

0102

06

07

08

09

10

28

12

32

33

30

36

37

45 48
46

4341

40

47

2425

2226

20 21

38
39

34

35

05

03

04
17

23

29

31

50

51

4442

27

New No changeMove

REACT NATIVE

1. Migrate to Expo
2. Solito
3. Suspense for data fetching
4. React Native Web
5. Expo Router
6. React Native Keyboard Controller
7. React TV Space Navigation
8. React Server Components for mobile
9. react-native-unistyles
10. react-native-svg as a default

NATIVE

22. Koin
23. Gradle Version Catalog
24. KSP
25. SF Symbols
26. Swift 6 Migration
27. The Composable Architecture
28. Tuist 4
29. µ-Features Architecture
30.	Compose	Stability	Configuration	File
31. Kotlin Multiplatform
32. Factory
33. Room
34. Swift Dependencies
35. Typed Errors in Kotlin with Arrow
36. Amper
37. Compose Multiplatform (CMP)
38. Swift Perception
39. Swift Testing
40. SwiftUI Hot Reload

FLUTTER

11. checks
12. Riverpod
13. sliver_tools
14.	 flutter_map
15. mmkv
16. Reactive Forms
17. Shorebird
18. Dart Macros
19. Patrol
20. Signals
21. isar

GENERAL

41. Feature Toggles
42. Flashlight
43. Generate an API client
44. Rive
45. Supabase
46. UI Snapshot testing
47. Identifying Defect Detection Stage
48. Maestro
49. MASVS 2.1
50. Ship Show Ask
51. Weekly Engineering Review
52. Fleet
53.	PWA-first

Blips

10 | Tech Radar #3 - November 2024

Which alternative
to choose?

When we launched BAM, now Theodo Apps, in 2014, the choice of technology was a
very risky one. We were convinced that cross-platform was the future of mobile and we
chose a technology stack consisting of Cordova and Ionic. But this was not an obvious
choice, given the many competitors to Cordova, such as Xamarin (backed by Microsoft)
or Titanium (which uses native UI components).

Each of these solutions had distinct strengths and significant drawbacks. In 2015, the
landscape changed with the emergence of React Native, which solved most of the
problems of the other frameworks. We adopted it as early as October 2015. Two years
later, Flutter was created with a technically different approach, but with the same
level of quality. Over time, the Flutter solution has proven itself. At the same time, the
emergence and growing popularity of Swift and Kotlin brought a lot of freshness and
modernity to native development, to the detriment of cross-platform development.

So, we've gone from a phase where the choice was not obvious (before summer 2015),
to a phase where the choice was clear (2015-2018), before becoming very complex
again. This is why we choose a specific solution for each project and this is part of the
first discussions we have with our customers.

CHOISING MOBILE TECHNOLOGY

You may notice that our radar doesn't make a clear
recommendation between Flutter, React Native,
and Native technologies. These 3 technologies define
the choices, but we don't compare them directly.

11

These discussions must consider:

• product strategy: what functions, what design, who will be the users?

• tech vision: what is the company's technical vision, who is going to work on this
project, what are the existing teams, what is the recruitment strategy?

• the budget: how much can we invest, over what period and what are the project's
financing conditions?

This exchange allows us to evaluate the project in relation to the 3 technologies and to
make a recommendation, strong depending on the constraints.

In short, we can't say with certainty that "technology A is better than technology B". The
decision must be made on a case-by-case basis, with input from all stakeholders and
mobile experts who know the different solutions.

We'd love to sit down with you over coffee and give you a personalized
recommendation for your app and your business.

React Native

QUADRANT

10 BLIPS | 4 ADOPT | 3 TRIAL | 2 ASSESS | 1 HOLD

02

01

06

07

08

09

10

0304

05

New No changeMove

In this edition of Tech Radar, we highlight two major trends
in the React Native ecosystem: the growing adoption of Expo

and the rise of universal applications.

Now recommended by Meta for the development of new React Native
applications, Expo has become a must-have solution. For many projects,

migrating to Expo represents a significant gain in terms of quality,
productivity and maintenance, making the use of this framework

essential for all React Native projects.

At the same time, universal applications are booming thanks to tools
like Solito and Expo Router. These solutions make it possible

to share a code base between web and mobile platforms, reducing
development costs and complexity. Code sharing can also be extended
to TV and desktop platforms, which are benefiting from an increasingly

rich React Native ecosystem.

As these tools continue to evolve, React Native's "learn once, write
anywhere" tagline has never been more relevant, facilitating the
development of high-performance, cross-platform applications.

BY CYRIL BONACCINI
Staff Engineer

RE
AC

T N
ATIVE

14 | Tech Radar #3 - November 2024

ADOPT
1/10 blips

1 Migrate to Expo

Maintaining the "native" part of
React Native applications can be
time consuming. Major releases
of React Native often take several
days and introduce bugs due to
incompatibilities with other native
packages in use. Updating the
latter is also a tedious process.

Expo is the solution that makes
it easier to build and maintain
React Native applications.
Expo's prebuild system, called
Continuous Native Generation
(CNG), automates the generation
of native code from configuration
files. Config plugins integrate
specific native modifications, while
the Expo Modules API simplifies
the creation of native modules.
Expo Application Services (EAS)
makes it easy to build and deploy
mobile applications. In addition,
Expo Updates offers an overthe-
air (OTA) update solution
for sending updates without
having to go through the stores.

Meta officially recommends the
use of Expo for new React Native
applications, as stated on the
React Native website: "To build
a new app with React Native,
we recommend a framework
like Expo". What's more, with the
scheduled closure of AppCenter
by Microsoft on March 31, 2025,
Expo Updates remains the only
viable solution for OTA updates.

Many projects never left the
ground with Expo because
the solution wasn't always as
complete and stable as it is
today. Fortunately, it's possible
to migrate to Expo gradually.
First, by configuring a new
Expo application with all the
dependencies of the existing
application so that the JavaScript
code can be executed. Then,
by updating the deployment
processes to use EAS and Expo
updates. Finally, by migrating to
Expo modules to benefit from

15

OUR PERSPECTIVE

We strongly
recommend planning
to migrate your
project to Expo to
simplify upgrades,
increase productivity,
and improve
maintenance of React
Native projects.

higher quality modules that
are better maintained and
automatically updated when
the Expo SDK is upgraded.

At Theodo, we've seen
significant gains in
development and
maintenance time by using
Expo in our projects. The
ease of updates, improved
productivity, and robustness
of the Expo ecosystem make
it a must-have solution
for React Native projects.
Despite some migration
challenges and support
limitations on certain
platforms, adopting Expo
is a strategic decision that
will pay off in the long run.

16 | Tech Radar #3 - November 2024

ADOPT
2/10 blips

2 Solito

Universal applications are
gaining in popularity, allowing
developers to target iOS, Android
and the web with a common
code base. This trend raises the
question of the best technology
to handle this multi-platform
approach. At Theodo, we use two
frameworks depending on the
project: Expo Router and Solito.

As its documentation
indicates, Solito is both:

• A library that bridges
the gap between React
Navigation and Next.js.

• A CLI for creating a project
with a monorepo containing
an Expo application and a
Next.js application, where
Solito is used to navigate
the shared code.

The main advantage of Solito over
Expo Router is the ability to use
the advanced features of Next.js.
These include enabling

serverside rendering (SSR), using
server components, improved
font and image management,
and better support for
internationalization. For
applications where performance
and SEO are critical, this is an
undeniable advantage. Monorepo
also provides a clear separation
between web- or mobile-specific
code and shared code, which is
especially interesting if certain
features of your application
are web- or mobile-only.
Another interesting use case
is if you already have an Expo
application and a NextJS
application, and you want to
share code between them. In this
case, the applications can be
grouped under a single repository
and the mobile components
can be shared incrementally.

However, using a monorepo
with an Expo application and
a NextJS application presents
some challenges compared

17

OUR PERSPECTIVE

Solito is an excellent
option for universal
application projects
where SEO and
web performance
are critical. For
applications that
don't need these
features, it's easier
and less expensive
to use Expo Router.

to a single application under
Expo Router. While this can
introduce some complexity,
such as the need to maintain
two separate navigation
systems, this approach also
allows for greater flexibility.
Page creation is still fast,
but to ensure a consistent
experience between the
mobile app and the website,
it's important to synchronize
the page structure
between the two routers.

Solito makes it much easier
to navigate the shared
code, although the lack of
typing and autocompletion
for URLs requires special
attention to avoid errors.

RE
AC

T N
ATIVE

18 | Tech Radar #3 - November 2024

We talked about Suspense
in the last Tech Radar and
recommended its activation.
The major advantage of
using Suspense with a data
fetching solution like React
Query is the simplification
of the components, whose
loading states and error
handling we no longer need
to specify. This not only
improves maintainability,
but also UX, since it
encourages the placement
of loaders and error inserts.

There is, however, one aspect
to be aware of when switching
to Suspense. If several data
fetching hooks using
Suspense are placed end-
to-end, the asynchronous
tasks will execute one after
the other, even if they are
independent, a phenomenon
commonly referred to as
waterfall calls. The solution
we recommend is to
distribute hooks as far down
the React tree as possible,
so that the component
being suspended is as small

as possible. As the
components are suspended
in parallel, this ensures
asynchronous parallel calls.
To improve time-to-
interactivity (TTI), it is also
possible to prefetch requests.

Recently, the React team
released a change that
completely broke React
Query* with Suspense
(all calls became waterfall,
even when applying
the above approach).

However, that change was
cancelled and it delayed
the release of React 19. This
makes us particularly
confident that this way of
using Suspense is indeed a
practice recognized and
validated by the React team.

OUR PERSPECTIVE

With all the UX
and maintainability
benefits offered by
Suspense for data
fetching (with React
Query or other libraries
supporting it), we
strongly recommend
switching to Suspense.
We also recommend
migrating existing
projects.

3 Suspense
for data fetching

ADOPT
3/10 blips

* https://tkdodo.eu/blog/react-19-and-suspense-a-drama-in-3-acts 19

ADOPT
4/10 blips

4 React Native
Web

Since an app is often
available on both web and
mobile, it's natural to want to
share code between these
platforms, which is possible
for business logic, UI state,
and API calls. However,
UI components cannot
be shared by default.

React Native Web is a
React DOM-compliant
implementation of React
Native components and APIs.

We've been able to share
between 75% and 95% of
the code between React
Web and React Native
applications using React
Native Web on several
projects, and the feedback
has been very positive.
Variations in the amount
of code shared depend on
the amount of web and/or
mobile-specific functionality,
such as page layout.

In our previous Radar, we
reported on performance
and accessibility issues. A lot

of work has been done since
then, both on react-native
and react-native-web, as well
as with community libraries
like Tamagui and Expo Router.

React Native Web is not a
magic solution to
all codesharing
problems, and the
remaining points have more
to do with the way we work
than the technology itself:

• Page layout can
differ between web
and mobile, so it's
often better to share
certain components
of a page rather than
the entire page;

• It's important to
consider code sharing
at the design stage to
maximize the benefits.

OUR PERSPECTIVE

We are now using
React Native Web
on all of our projects
that require code
sharing between
web and mobile. This
adoption confirms
our confidence in the
technology and we
now recommend it
as a reliable solution
for developing
applications for
these platforms.

RE
AC

T N
ATIVE

RE
AC

T N
ATIVE

20 | Tech Radar #3 - November 2024

Developing web applications
requires taking into account
constraints that are
generally unknown to mobile
developers: bundle size,
direct access to any page via
a URL, server-side rendering...

In order for a framework to
offer the best performance
with respect to these
constraints, it must directly
manage the bundling
process, navigation
and, if necessary, data
fetching. This is what Next.
js, Astro, and Remix do.

Expo-router is a universal
navigation framework for
React Native apps that,
thanks to its integration with
other Expo tools, promises
an optimized experience on
both iOS/Android and the
web. Specifically, exporouter
provides file system based
routing (creating a file in
the app folder defines a new
route) and is an overlay for

React navigation.
The web platform is
officially supported, with URL
management, bundle splitting
to optimize performance,
and the ability to include
CSS. This is the main
advantage of Expo Router.

In use, Expo Router's
youth is still noticeable.
For example, the navigation
typing is experimental
and incomplete (it doesn't
cover search parameters),
and the seemingly simple
API complicates the
implementation of certain
scenarios that weren't
a problem for developers
familiar with React
Navigation. The choice of
an app folder where all files
become routes means that
2 parallel trees must be
maintained in the codebase,
whereas other frameworks
go back to this constraint
and even the very idea of
"filesystem-based routing".

OUR PERSPECTIVE

We have decided
to put Expo Router
for universal apps
in Trial because
it's the best choice
for deploying a React
Native app on the
web. However,
the performance
is not yet "best-
inclass" (no server-
side rendering,
no treeshaking yet),
so in certain
scenarios an overlay,
for example with
Next.js and Solito,
is still necessary.

5 Expo Router
TRIAL

5/10 blips

21

Almost all mobile applications
allow the user to enter
text and therefore need to
manipulate the iOS and
Android virtual keyboard.
Even the most popular
apps often have bugs,
or a suboptimal user
experience related to this
keyboard management.
In fact, it's a more complex
problem than it seems.
And in the case of React
Native, platform differences
don't make it any easier.

The React Native package
itself provides limited APIs
to deal with this problem,
so one developer decided
to tackle it and released
the React Native
Keyboard Controller.

This library provides a unified
API between iOS and Android
that includes all the necessary
functionality: keyboard open/
close with UI animation
(integrated with reanimated),
text field management,
placement of fixed buttons
above the keyboard...

React Native Keyboard
Controller is a recent
library and may have
some instabilities, but it's
already the most complete
solution in its field, hence
its position on our trial dial.

6 Keyboard
Controller

OUR PERSPECTIVE

We've started
using this library
in our projects
and encourage
other developers
to do the same.

TRIAL
6/10 blips

22 | Tech Radar #3 - November 2024

TRIAL
7/10 blips

One of the biggest challenges
in developing a TV application
is managing the focus on
the remote control. Solutions
are not consistent across
platforms. React Native tvOS
provides an implementation,
but it's not completely
predictable between tvOS and
AndroidTV, and it doesn't yet
exist for the web. This makes
it difficult to build universal
applications with React Native.

At Theodo, we've developed
React TV Space Navigation,
a library that reimplements
navigation in React without
using the native focus,
ensuring consistent
behavior across platforms.
It provides a React-friendly
API with purely declarative
components and includes
optimizations like virtualization
and CSS scrolling to improve
performance, especially
on less powerful devices.

However, bypassing native
focus has limitations:
accessibility support is
incomplete, and some
specific features, such as
"ploc" on Android, are missing.
Despite these drawbacks, we
have successfully deployed
a large cross-platform
streaming application using
this library. This application
is very smooth to use.

We are watching the
development of react-
native-tvos, which may one
day make our library obsolete.
With proper component
isolation, it's easy to revert to
the default react-native-
tvos management, but
this would remove support
for the web, which has no
builtin focus management.

7 React TV
Space Navigation

OUR PERSPECTIVE

For now, we
recommend trying
out the library for your
cross-platform TV
projects, keeping in
mind the limitations
of this solution, which
comes with certain
compromises in
terms of accessibility
and native feel.

23

In server-driven UI, the server
sends a precise description
of what should appear
on the screen, rather than
raw data. Some applications
use this approach to respond
to constraints such as
the need for rapid iteration,
heavy UI customization,
or application size limitations.

In March 2024, the React
teamannounced an official
serverdriven UI mechanism
called "React Server
Components" (RSC).
These components can
be "composed" with "client
components". React and
the framework it uses are
responsible for managing
the interactions between
the two worlds (creating
the right javascript bundles,
reconciling the client-side
component tree, etc.).

The only role of the mobile
application is to display
the transferred UI.

Because server components
run on a server, they can

directly access secrets,
databases, and the file
system. This promises
to radically simplify the
development of certain
functionalities. It also avoids
client-server round trips,
which improves performance.
So far, there is no integration
of Server Components in
a React Native framework,
but Expo is working on it. A
React Native implementation
of Server Components will
face several challenges:

• You'll need to make
sure that the native
components generated
on the server side are
available on the native
side, otherwise you'll crash.

• Mobile applications
often need to operate,
at least in part, offline.

• The "transparent"
composition of client and
server components is
in fact limited by subtle
rules that define which
component can import
and/or receive in prop

which other component
(this limitation also
applies to the web).

ASSESS
8/10 blips

8 React Server
Components for mobile

OUR PERSPECTIVE

We invite you
to keep an eye on
how the React Native
Server Components
ecosystem evolves,
so that you can
use them as soon
as possible,
where relevant.

24 | Tech Radar #3 - November 2024

9 Unistyles

Many style libraries have
emerged in response to
the growing popularity
of universal applications.
These include Tamagui,
Nativewind, and Unistyles.
With the Web came new
performance and server-side
rendering (SSR) issues, making
solutions more complex
and difficult to compare.

Unistyles provides an API close
to that of StyleSheet, but with
additional features: accessible
theme in style, variants,
dynamic styles, breakpoints,
access to insets and screen
size. The core of the library
is written in C++ and offers
similar performance
to StyleSheet.

The advantage of Unistyles
is the simplicity of its API.
Defining a custom theme is
easy because the structure is
not imposed, unlike Tamagui.

Its proximity to StyleSheet
makes it easier for React
Native developers to get
started, while those used
to Tailwind will be more
familiar with Nativewind.

The library is compatible
across many platforms:
web, Windows, MacOS,
visionOS, and TV. However,
support for SSR is not yet
complete, since responsive
styles don't use media
queries. Version 3 should
include a compiler, such as
Nativewind or Tamagui, to
generate CSS at build time.

Unistyles is a new project, but
it's very active. The project
benefits from the commitment
of its main contributor, Jacek
Pudysz, which allows it to move
forward quickly. However,
this dependence on a single
individual may raise questions
about its sustainability.

OUR PERSPECTIVE

Unistyles is a very
promising solution for
universal applications.
It is easy to use and
offers many practical
features. However,
it still lacks maturity,
especially in terms
of web support,
which is not yet on
par with Nativewind.
These shortcomings
should be fixed with
the release of V3.

ASSESS
9/10 blips

25

HOLD
10/10 blip

SVG is a vector-based image
format in which the image
is dynamically drawn. This
format has some interesting
properties: it is never blurred
and can inherit color or shape
variations. However, drawing
dynamically comes at a
performance cost, especially
if the rendering engine
is not tuned or if the image
 is complex.

The react-native-svg
library is often used to draw
SVGs, recreating each SVG
shape in the React view so
that it can be dynamically
modified or animated.
However, this transformation
can be slow, especially
for icons, which are often
numerous on a single
screen and slow rendering.

There are better solutions
for icons and static SVGs.
For icons, icon fonts can be
used. This means converting
SVGs to characters in a font.
The limitation of this solution

is that the SVG must be
monochrome, a typical
feature of standard icons.
A common method is to
use IcoMoon in combination
with @expo/vector-icons.

For other illustrations, expo-
image is a good alternative.
This library handles SVGs and
displays them better. But it's
impossible to animate the
SVG and adjust its colors
(unless you apply a tint to the
whole SVG container, but that
changes the whole image).

These alternatives cover a
large part of SVG needs, since
it's rare to need to partially
change the color of SVGs.

OUR PERSPECTIVE

We recommend not
using react-nativesvg
by default for all
SVGs. It is preferable
to use solutions like
icon fonts for icons
or expo-image
for static SVGs to
improve performance.
However, it is still
important to use
react-native-svg
for dynamic SVGs

10 react-native-
svg as a default

Flutter

11 BLIPS | 3 ADOPT | 4 TRIAL | 3 ASSESS | 1 HOLD

QUADRANT

11

13 16

15

14

20

21
19

18

17

12

New No changeMove

In this third edition of our radar, we present the new generation of Flutter
technologies. Flutter breathes new life into issues already addressed

by some of the more established solutions in the ecosystem,
such as flutter_test, state managers, and hive storage.

New solutions for rendering high-performance maps, managing forms,
or persisting data are emerging, improving the development experience
and the robustness of applications. This handout provides an overview

of these small developments with big impact.

BY GUILLAUME DIALLO-BOISGARD
Head of Tribe Flutter

28 | Tech Radar #3 - November 2024

When unit testing in dart, the
basic solution for checking
that a variable has the
expected value is to use
the flutter_test expect
function, which takes
a variable and a matcher.
The main problem with this
function is the dynamic
typing of its arguments.
If the type of the variable does
not match the type of the
matcher, an error is raised
only during test execution,
without any indication to the
developer during test writing.

The checks package
exposes several methods
for checking the value
and type of variables
in the equivalent function
and provides support for
deep equality of collections.
The available methods
are automatically filtered
by the type of variable

in the function. In addition,
Checks enhances the
development experience
by providing filtered
autocompletion directly
on the provided methods
in modern IDEs. All check
methods can be called
in a chain, a declarative
approach that promotes
code clarity and readability.
The library also provides
the ability to expect Futures
or Streams values. Finally,
the ability to customize
tests removes limitations
by allowing you to combine
existing tests or create
logic entirely specific to
your context.

11 checks

OUR PERSPECTIVE

Although little known,
the checks library
offers significant
benefits that make
testing more explicit
and readable. That's
why we make it our
default solution for
Flutter projects and
strongly recommend
its adoption.

ADOPT
1/11 blips

29

In Flutter, global state
management is achieved
through InheritedWidget
and ChangeNotifier, but
these APIs have several
shortcomings, including
verbosity, complexity, difficulty
in testing and the impossibility
of creating multiple states
of the same type.

Riverpod is a reactive
caching library that solves
these problems. Inspired by
react-query, it proposes
to serve data via providers,
which are declared outside
the widget lifecycle and can
automatically rebuild widgets
that listen to them. Providers
can serve asynchronous
data coming, for example,
from a call API or a local
database, handle errors and
caching, and easily define
other functionalities such as
debounce or pull-to-refresh.

Riverpod is also compilesafe,
offers a declarative
API, is actively maintained,
and is supported by a vast
community (6k stars on
github, 98% popularity on pub.
dev). Since last year, we've
been able to experiment
with its code generation
tools, which enable hot
reloads to update a provider
and further reduce API
verbosity and complexity.

12 Riverpod

OUR PERSPECTIVE

We recommend
using Riverpod,
which we've been
using for 3 years
on Flutter projects
of all sizes. The
announcement
of riverpod 3,
which should make
it possible to define
and reuse providers
with generic types
as parameters,
only reinforces
our enthusiasm.

ADOPT
2/11 blips

30 | Tech Radar #3 - November 2024

In Flutter, slivers are a type
of widget that integrate
into scrollable views and
react to scrolling to create
complex, animated scrollable
screens. While slivers are not
particularly difficult to use,
they are low-level widgets
and their writing is complex.

While the framework offers
several very high-level slivers,
such as the SliverAppBar
and the SliverList, it can
be difficult to customize
scrollable views beyond the
classic ones on offer. The
sliver_tools library offers
a collection of ready-to-use
slivers that enhance the
framework's native slivers,
providing an intermediate
level of flexibility between
high-level widgets and
low-level RenderObjects.

Among the most frequently
used are MultiSliver, which
lets you combine several
slivers into one to improve
code quality by cutting
out responsibilities, and
SliverPinnedHeader, which
lets you create scrollable
elements that snap to the
top of the scrollable view to
keep them visible and give a
pleasant navigation effect.

13 sliver_tools

OUR PERSPECTIVE

Our use of sliver_
tools on projects has
been very conclusive,
with no reported
limitations. This
toolbox is now part of
our standard stack
at Theodo, enabling
us to bring to life the
original scrollable
views imagined in
collaboration with
our designers.

ADOPT
3/11 blips

31

14 flutter_map

OUR PERSPECTIVE

We recommend that
you try flutter_map
for integrating raster
maps into your Flutter
projects, due to its
ease of use and
performance.
However, we invite
you to remain
open to other
available solutions,
especially when
using vector maps.

TRIAL
4/11 blips

Mapping in mobile
applications is a complex
subject due to the
performance and limitations
imposed by certain libraries
for displaying various
elements. Traditionally,
developers have turned to
solutions such as Mapbox
and Google Maps, which
use a C++ graphics engine
to render maps. While these
solutions are robust, they
don't always integrate
seamlessly with Flutter,
particularly when it comes to
customizing the elements to
be displayed on the map.

The flutter_map library
has been written entirely
in Dart, with a declarative
and composable API for UI
elements, combined with
an imperative approach
for manual control (e.g.
animations). This approach
enables developers to take full
advantage of Flutter's benefits,
notably by easily integrating
widgets on the map. It also
benefits from a varied
ecosystem of open-source

extensions. We've used
flutter_map to create highly
customized raster maps
and have been impressed
by its ease of use and
performance for raster maps.

flutter_map does, however,
have some important
limitations. The extension
for vector maps suffers
from major performance
problems, making it
impractical for this type of
map. Transitions between
zoom levels also lack fluidity
(compared with the Mapbox
or Google Maps SDKs). This
limitation has prompted
us to opt for alternative
solutions for projects
requiring vector maps.
To solve these problems,
the community is actively
working on a solution using
Flutter's latest advances,
such as Impeller
or flutter_gpu.

32 | Tech Radar #3 - November 2024

15 mmkv
TRIAL

5/11 blips

There are several local database
solutions available in Flutter,
including SharedPreferences, Isar,
Hive, ObjectBox, SQLite and others.
Each of these solutions has its own
advantages and disadvantages
in terms of performance, ease
of use and functionality. In this
context, we have integrated MMKV
for Flutter on one of our projects.
MMKV is a high-performance,
easy-to-use key/value storage
library developed by Tencent.
Used in the WeChat application,
MMKV is designed to offer
optimum performance using
mmap and protobuf, enabling
memory to be synchronized
with files and values to be
encoded/decoded efficiently.

By using Dart FFI for synchronous
read and write operations, we can
take full advantage of this Flutter
performance. We have measured
that opening an MMKV database
is much more CPU-efficient than
other solutions, such as Isar, which

can block a thread for several
hundred milliseconds. MMKV's API
is clear and minimalist, making it
easy to integrate and use in Flutter
projects. Since the migration to
a federated plugin architecture,
the development experience with
MMKV has improved significantly.
In addition, MMKV supports
data encryption, providing
an extra layer of security.

However, MMKV for Flutter does
have a few limitations. Currently,
only iOS and Android platforms
are supported, although MMKV
itself is available on iOS, Android,
Linux, macOS and Windows.
Future web support could prove
complex to implement. In addition,
a recent minor update removed
support for Android ARM7 and x86
architectures, impacting around
2% of our production users.

Despite these challenges, we find
MMKV to be a very interesting
solution. It's simple and extremely

33

OUR PERSPECTIVE

We recommend
testing MMKV in
your Flutter projects.
However, a thorough
assessment of
the platforms and
devices used by your
users is essential to
ensure successful
integration and
compatibility with
your project's specific
requirements.

powerful, developed by
Tencent, which makes it
highly reliable and easy
to maintain over the long
term. Although very popular
in the React Native and
Native communities, MMKV
is still relatively unknown
in the Flutter ecosystem,
probably due to the presence
of already established
synchronous local databases.

34 | Tech Radar #3 - November 2024

Forms management and
user input validation are
crucial but complex aspects
of application development.
Reactive Forms, a library for
Flutter, offers model-based
form management inspired
by Angular. At Theodo, we use
it for projects requiring forms,
such as login, registration
or payment forms.

Reactive Forms boasts a rich
ecosystem of predefined,
asynchronous and
customizable validators.
This flexibility makes it easy
to manage complex, project-
specific validation rules.
However, it can be difficult
to get to grips with, and the
code required to define a
form is sometimes verbose.
The typing system could also
be improved. An extension
using code generation is
currently under development
to simplify this functionality.

Reactive Forms integrates well
with state management tools
such as Riverpod or BLoC,
enabling efficient reaction to

form state changes. It also
enables unit testing of each
validation rule, ensuring that
no regression is introduced
during updates. This improves
application productivity
and maintainability.

Reactive Forms'
documentation and
community support are
excellent, with an active
community and regular
updates. The package
has 458 stars on GitHub
and 839 likes on Pub,
and the ecosystem of
community-created
validators is a major asset.

16 Reactive Forms

OUR PERSPECTIVE

We recommend
trying out Reactive
Forms for your Flutter
projects because of
its robust validation
capabilities, flexibility
and seamless
integration with state
management tools.
However, given the
initial complexity and
verbosity of the code,
you should proceed
with caution.

TRIAL
6/11 blips

35

Update times are a major
challenge in mobile
development, as each version
must be validated by the
stores, delaying the availability
of urgent patches to users.
What's more, you must wait
for each user to update
the application. Shorebird,
announced in early 2024 by
Flutter creator Eric Seidel, is
an open-source solution for
deploying Flutter application
updates over-the-air
(OTA) without going through
the stores. This approach
enables minor updates to
be deployed directly via
their servers, accelerating
the development and
deployment cycle.

Integrating Shorebird
into a Flutter project is
straightforward but has its
drawbacks. Cost can be
a barrier for some teams,
and the shorebird patch
command is slower than
flutter build, which can
slow down the update
process, especially in a QA
environment that's active

several times a day. Currently,
Shorebird only supports
iOS and Android, excluding
desktop applications. In
addition, the application has
to be restarted to run the
updated code, which can
affect the user experience.

Despite these drawbacks,
Shorebird offers a valuable
feature as the only OTA
update solution for
Flutter. This tool meets
a crucial need in mobile
development, and respects
store rules by updating
only interpreted code.

Although Shorebird's CLI has
recently reached version 1, it
still presents a few instabilities,
but these are quickly resolved
as the development team
is attentive to feedback
from the community.

17 Shorebird

OUR PERSPECTIVE

Shorebird shows
promising results
and has the potential
to transform release
management in
Flutter applications.
We recommend
testing this
technology to assess
its impact on your
development and
deployment cycles.

TRIAL
7/11 blips

36 | Tech Radar #3 - November 2024

During development, we
rely on code generation
tools such as freezed,
json_serializable and
build_runner. These
tools, while essential for
addressing recurring issues
such as deserialization,
immutability or deep equality,
introduce inefficiencies and
detract from the developer
experience by imposing
frequent manual code
generation. They also tend
to clutter up our projects
with generated files.

Dart macros, currently in
beta, promise to transform
this dynamic by integrating
metaprogramming directly
into the compiler. This allows
developers to generate
code as they write. They
thus improve productivity
by reducing repetitive
generations and maintaining
a cleaner code base.

Macros, however, could
compromise Dart's simplicity
and readability, which are

essential to its ease of
learning. Dart is renowned
for being a "boring" language
in the good sense of the
word: predictable and
stable. The introduction
of macros, by contrast,
introduces a dimension of
complexity not traditionally
associated with Dart.

If macros seem to threaten
this transparency, the
proposed augmentation
system allows developers to
visualize augmented code
with a single click in their
development environment,
thus maintaining a clear
understanding of the
code being executed.

Note that macros will be
used mainly by library
maintainers, such as freezed
or json_serializable, and
not by all Flutter developers
on a day-to-day basis. We'll
be keeping a close eye on
how maintainers and the
community welcome and
make use of this new feature.

18 Dart Macros

OUR PERSPECTIVE

We're optimistic about
the potential of Dart
macros to simplify
and improve code
generation in our
Flutter applications.
Although the macros
are currently in
the experimental
phase, the Dart
team's roadmap
calls for a stable
version in early 2025.

ASSESS
8/11 blip

37

At Theodo, we believe
that automated testing
is one of the best ways
to prevent functional or
visual regressions in mobile
applications. However, existing
Flutter testing solutions,
such as unit tests and
widget tests, do not always
comprehensively cover
endto-end (E2E) scenarios.

Patrol1 is a Flutter library that
simplifies the writing and
execution of E2E tests. It
integrates an API that makes
it very easy to interact with
the test device's native
functionalities, such as
permissions, notifications
or parameters. The patrol_
finders2 library, which is
now independent of Patrol,
also offers syntactic sugar,
making test writing more
intuitive and less error prone.

At Theodo, we approach
automated testing by using
unit tests instead, as well as
adaptive UI tests (also known
as golden tests) thanks to
tools like adaptive_test3.
They guarantee complete
functional coverage
while visually verifying
the user interface.

For E2E testing, Patrol offers
an extensive API but will only
work with Flutter applications.
For this need, our current
choice is Maestro, a proven
technology whose learning
we can share with the React
Native and native iOS/Android
teams. However, we find that
Patrol solves the problem
of E2E testing in Flutter in an
interesting and intuitive way.

19 Patrol
ASSESS
9/11 blip

OUR PERSPECTIVE

For Flutter developers
looking to improve
their E2E testing, Patrol
is worth exploring,
especially if you want
to use a tool that
integrates seamlessly
with your existing
Flutter tests. Although
our current choice
is Maestro, we'll
continue to follow
Patrol's development.

1 https://pub.dev/packages/patrol
2 https://pub.dev/packages/patrol_finders
3 https://pub.dev/packages/adaptive_test

38 | Tech Radar #3 - November 2024

20 Signals
ASSESS
10/11 blip

Managing the overall state
of an application is critical
to its maintainability and
performance. Several solutions
have been proposed for Flutter,
and one new option deserves
our attention: Signals.

Signals is an innovative library
for Flutter that simplifies state
management with reactive
signals. Inspired by reactivity
concepts from the JavaScript
ecosystem, such as preact, it
provides fine-grained reactivity,
where each signal represents a
value encapsulated in a reactive
shell. Signals can be simple
states or computations derived
from other states, forming an
acyclic graph of dependencies.

Signals offers several
key advantages:

• Fine-tuned reactivity:
signals automatically
track dependencies and
release them when they
are no longer needed.

• "Lazy" evaluation: signals
are calculated only
when they are read, thus
optimizing performance.

• Flexible PLC: Allows multiple
signal composition with
reduced PLC surface area.

• Surgical rendering: Only
the necessary parts of the
widget tree are updated,
improving performance.

• Dart Native compatibility:
Supports Dart JS, Shelf
Server, CLI, VM, Flutter (Web,
Mobile and Desktop).

The Signals API is like that
of Riverpod, but with a more
advanced push-pull system.
Unlike Riverpod, which also
handles reactive dependency
injection, Signals focuses exclu-
sively on state management.

To scale a Flutter application,
you need to use a dependency
injection solution such as
InheritedWidget, Provider or GetIt.

39

OUR PERSPECTIVE

We encourage you
to experiment with
Signals, bearing in
mind that it hasn't
yet reached the
level of adoption of
established solutions
like Riverpod or BLoC.
Keep an eye on this
package for future
developments and
integration potential.

At Theodo, we're exploring the
potential benefits of Signals,
a promising technology
that could unify state
management practices in the
currently fragmented Flutter
community. Although Signals
is still relatively new and not
widely used in largescale
production projects, its
growing popularity in
other web frameworks
indicates a convergence
towards a standard reactive
programming technique.

40 | Tech Radar #3 - November 2024

Local data management
is especially important for
applications that need to
operate offline or that require
a high level of confidentiality
and security. An efficient
database ensures optimal
data management, fast
access, and a smooth
user experience.

Isar is a fast, easy-to-use
NoSQL database library
designed specifically for
Flutter applications. Designed
to replace Hive, a key/value
database widely used in
the Flutter ecosystem, Isar
promises high performance
thanks to its engine written
in Rust. It offers advanced
features such as composite
indexes, asynchronous
operations, and crossplatform
support (iOS, Android,
desktop). However, we have
identified a few issues that
warrant a cautious approach.

The last period of significant
activity on Isar's GitHub
repository was a year ago,
raising concerns about
its development and
maintenance. In addition,
internal testing conducted
as part of our Kaizen initiative
has shown that the time
required to open encrypted
data with Isar can slow the
opening of an application by
several hundred milliseconds.
This limitation, which occurs at
a critical moment in the user
experience, is not present in
other more mature solutions
such as MMKV. Therefore,
despite the promise of high
performance guaranteed by
its Rust engine, Isar has speed
and reliability limitations that
currently block a large-scale
production application.

21 isar
HOLD

11/11 blips

OUR PERSPECTIVE

We recommend
choosing solutions
other than Isar to
manage local data
storage, such as
MMKV or ObjectBox.
Although the Isar
library is promising,
it's best to wait
until it reaches
a higher level of
maturity and stability
before using it for
production projects.

4141

Natif

19 BLIPS | 8 ADOPT | 6 TRIAL | 4 ASSESS | 1 HOLD

33
28

32
30

35
34

36

39

38

37

2426 25

40

22

27

23

29
31

QUADRANT

New No changeMove

Native technologies are characterized by maturity while remaining
a fertile ground for innovation. Over the past year, we have seen a

determination by all players to reduce their historical disadvantages,
such as long compile times and complex configuration files. Today, that

transformation seems largely complete. The developer experience
is richer and more fluid, maximizing the value delivered to end users.

And the innovation doesn't stop there: the Android ecosystem is
launching an assault on universal apps with its multiplatform tools,

while the iOS ecosystem seems determined to innovate in large chunks
with Swift Concurrency and Swift Testing.

The future of native mobile is promising and exciting, and it's a horizon
we invite you to explore in this issue.

BY LOUIS PRUD'HOMME
Tech Lead

44 | Tech Radar #3 - November 2024

The dependency injection
pattern is widely used to apply
the principle of control inversion.
Indeed, this pattern contributes
to greater code modularity,
improves maintainability, and
facilitates testing. However,
implementing dependency
injection can be tricky.

There are several dependency
injection frameworks available
for Kotlin, including Koin, Dagger-
Hilt, Kodein, and kotlin-inject. Koin
seems to offer many advantages.
Let's see why by comparing it to
Hilt, the library recommended
by Google for Android.

Hilt uses annotations to specify
the attributes to be injected and
how to construct them. Although
Koin also supports annotations,
it also allows dependencies to
be configured using a domain-

specific language (DSL) that is
intuitive and easy to master.
This configuration is isolated
in a file separate from the
business code, facilitating the
separation of responsibilities.

Koin and Hilt use different
approaches to dependency
management. Koin performs
injection at runtime as a
service locator, instantiating all
dependencies and providing the
necessary references to classes.
In contrast, Hilt performs injection
directly at compile time, and its
annotations have been compatible
with Kotlin Symbol Processing
(KSP) since November 2024.

Since Koin must resolve
dependencies at runtime,
this has an impact on
performance, but the difference
in performance is negligible.

22 Koin
ADOPT

1/19 blips

45

Hilt, on the other hand,
detects errors at compile
time. However, Koin, which
only detects them at runtime,
has not yet said its last
word, as it is possible to
check Koin's configuration
in unit tests and thus avoid
deploying a faulty
configuration. As far as
Kotlin Multiplatform (KMP)
is concerned, Hilt is only
compatible with native
Android, while Koin is
multi-platform, offering a
notable advantage. Since
Google I/O, it seems that
the compatibility of Google
libraries with KMP is only a
matter of time. It remains to
be seen whether Hilt will be
easily adaptable to KMP.

OUR PERSPECTIVE

In conclusion,
although Koin is
not the inversion
of control library
recommended by
Google, its ease of use
and multi-platform
compatibility make
it a preferred choice
for our new projects.
For an existing project
using Hilt, a migration
to Koin should only
be considered if
a switch to KMP is
planned soon.

46 | Tech Radar #3 - November 2024

In multi-module Gradle
projects, managing
dependencies and their
versions is a challenge
that raises three main issues.
Firstly, dependencies need
to be updated module
by module. Secondly,
it's difficult to check
whether a dependency is
obsolete. Finally, there is no
dependency autocompletion.
Creating a custom solution
is one option. You'll find
several, but they're unlikely
to match the quality of the
Gradle version catalog. This
approche creates a single,
centralized catalog in a
minimal file based on TOML:
here you can store all your
dependencies and their
versions, including plugins.
It's easy to update them
as needed.

In fact, the version catalog
has one advantage: your IDE
will alert you to new library
versions and can update
them for you. We recommend
automating these updates
with Dependabot or a
similar solution. All modules
can safely reference
dependencies, so your
IDE can help you with
autocompletion, even
if you're still using Gradle
files in Groovy instead of
the new KotlinScript files.

Migrating to the version
catalog is easy and well
documented. It's also
the perfect opportunity
to switch your Gradle files
from Groovy to Kotlin (.kts).

23 Gradle Version
Catalog

OUR PERSPECTIVE

Although
RefreshVersion
is another viable
solution, Gradle
Version Catalog has
been standardized
by Gradle and
Google as the
official dependency
management
solution. We
recommend switching
to this solution for
any project that is
not already using
one of the two
viable solutions.

ADOPT
2/19 blips

47

Developers often use code
generation to reduce
repetition and improve
code readability. In Android,
annotations are essential.
Developers can rely on
predefined annotations from
libraries such as Room, Hilt,
or Glide, or create custom
annotations to generate
specific code. Historically,
the Kotlin Annotation
Processing Tool (KAPT)
has been the standard
in the Android community.
It allows Java annotations
to be used in Kotlin code,
ensuring compatibility
with Java libraries.

Kotlin Symbol Processing
(KSP), developed by
JetBrains and Google, aims
to overcome the limitations
of KAPT by processing Kotlin
annotations directly without
converting them to Java
bytecode. This approach
is twice as fast as KAPT
because it eliminates
compilation steps. What's
more, KSP adapts better
to the specifics of the Kotlin

language, such as default
parameters, coroutines,
and data classes.

Many libraries that previously
depended on KAPT are
now migrating to KSP, and
most have already done so.
This is a godsend because
KSP supports Kotlin
multiplatform. So, developers
who want to migrate their
projects from Android to
Kotlin Multiplatform should
use KSP instead of KAPT.

If you don't use custom
annotations, the migration
is straightforward. Each
library that requires KAPT
provides detailed instructions
for switching to KSP.

24 KSP

OUR PERSPECTIVE

Although KAPT is still
a viable option, KSP
surpasses it in every
way. It provides better
support for Kotlin-
specific features and
is twice as fast. We
strongly recommend
switching to KSP

ADOPT
3/19 blips

48 | Tech Radar #3 - November 2024

A recurring frustration for
developers with raster images
such as PNGs is their lack of
flexibility: manual resizing,
creating multiple versions for
each context or color. Vector
images, while superior, also
require specific manipulation
or versions for each use.

Apple's SF icons provide
an elegant solution to
these problems. They
are vector icons that
seamlessly integrate
with our application's text,
greatly improving the
development experience
and maintainability. Their
flexibility is remarkable: you
can adjust the thickness
of the stroke, change the
color, and make them
multicolored, which simplifies
the work of designers and
ensures better integration
into the application's design
system. What's more, thanks
to the rendering engine
shared with the fonts, their
performance is optimal.

One of the major advantages
of SF Symbols is their harmony
with SwiftUI, especially when
it comes to animations and
integration with hierarchical
styles. For developers, this
means a reduction in
development time, and for
users, an improvement in the
visual quality of applications.

It's possible to create your
own SF symbols using
the Sketch1 tool, either
directly or from an existing
base. However, since the
management of edges is
not the same as with SVGs,
it is preferable to use a
specialized converter such
as SfSymbolConverter2,
especially if you already
have an existing icon set.
Alternatively, the 6,000
icons available by default
offer a quick and efficient
solution to reduce the lead
time of functionalities.

25 SF Symbols

OUR PERSPECTIVE

We recommend
using this technology
for all your native
projects. Despite
some subtleties in the
creation of custom
icons, SF Symbols
offers undeniable
advantages in terms
of integration speed,
convenience, flexibility
and performance.

ADOPT
4/19 blips

1 https://www.sketch.com/
2 https://github.com/tychota/SfSymbolConverter 49

Despite its advantages, Swift
suffers from problems that
affect developer productivity.
On the one hand, there is
a major problem of slow
compilation, particularly
pronounced in large projects,
where typing causes the
compiler to fail with the
message "The compiler is
unable to type-check this
expression in a reasonable
time". On the other hand,
the validity of concurrent
code is delegated to the
developers who write it.

Swift 6 provides a solution to
these problems. In addition
to several new features and
syntaxes, one of the most
significant improvements
in this new version is the
increased compilation speed.
This improvement alone more
than justifies a migration, as
it can significantly reduce
developer frustration and
improve productivity.

But Swift 6 also highlights
(statically) compiler-tested
concurrent code, allowing
developers to reduce the
number of these sometimes
hard-to-detect bugs.
However, this feature is
not without its drawbacks.
Static validation implies
major changes that disrupt
existing code bases, requiring
significant refactoring and
customization efforts. This
transition can be difficult
and resource-intensive,
especially for large projects,
despite the gradual migration
made possible by the feature
flags available in Swift 5.

26 Swift 6
Migration

OUR PERSPECTIVE

Given these
considerations,
we recommend
migrating to Swift
6. Although major
changes require
careful evaluation of
the investment, the
benefits of improved
compile speed and
verified concurrency
are substantial.

ADOPT
5/19 blips

ADOPT
6/19 blips

27 The Composable
Architecture

SwiftUI provides powerful code
primitives for externalizing
state but requires a
welldesigned architecture to
take full advantage of their
potential and not create
gigantic monolithic states.
In addition, with a developer
community split between
UIKit, SwiftUI, @Observable,
@ObservableObject, and
different architectures, it's
not easy to find your way
around an existing project.

The Composable Architecture
(TCA) is a framework
designed to solve these
problems in iOS applications.
Inspired by the one-way Flux
architecture popularized
by Redux, TCA adapts this
approach to Swift, making
state management more
intuitive and less verbose than
in JavaScript. Unlike libraries
like ReSwift, TCA is designed
for SwiftUI while remaining
compatible with UIKit.

TCA structures state around
user actions, ensuring a
clear, traceable flow of
changes, facilitating testing,
and enabling modular
architecture. Functionality can
be developed independently
and then integrated into a
complete application. This
formalization of the code
improves the development
experience and reduces the
learning curve. What's more,
the community1 around TCA
is robust, offering extensive
documentation2 and tutorials
to support developers.

The addition of navigation
management, as well as
the backporting of certain
features that were otherwise
unavailable on earlier
versions of iOS, such as
state observability, attest to
the library's transformation
this year and propel it to
the forefront of its field.

OUR PERSPECTIVE

At Theodo, we've
successfully
implemented
The Composable
Architecture
in production
projects and highly
recommend it for
state management in
SwiftUI applications.

1 https://www.sketch.com/
2 https://pointfreeco.github.io/swift-composable-architecture/main/documentation/

composablearchitecture/50 | Tech Radar #3 - November 2024 51

We've featured Tuist in our
previous Tech Radar for its
ability to improve iOS project
management. Using it
simplifies build configuration.
Better management of
build caches speeds up
compilation times, especially
for projects based on modular
architecture. However,
because of the major
changes introduced, this new
version may prove divisive.

The first major change is the
end of Carthage support:
each project will now have
to manage the fetching of
Carthage dependencies,
which may require
significant adjustments
to existing workflows.

What's more, Tuist 4 no
longer supports application
signing, forcing developers
who previously used this
feature to completely rethink
their signing workflow.

Another new feature of Tuist
4 is the use of Swift Package
Manager (SPM) files instead
of a specific format. This
transition allows for better
integration with other tools
in the ecosystem (e.g.
Xcode or dependabot).

Perhaps this is really the
maturity phase, as Tuist
focuses on what it does
well to do it better. Finally,
the challenges mentioned
above are fortunately made
easier thanks to the extensive
migration documentation and
good community support;
this makes it possible to take
advantage of the significant
improvements in build
performance brought about
by Tuist 4. The syntax is also
even more intuitive, which
makes the tool easier to use
and speeds up development.

OUR PERSPECTIVE

We always
recommend using
Tuist for new projects.
We also recommend
migrating to Tuist
4, as the long-term
performance and
project management
benefits far outweigh
the initial transition
challenges.

28 Tuist 4
ADOPT

7/19 blips

52 | Tech Radar #3 - November 2024

29 µ-Features
Architecture

OUR PERSPECTIVE

At Theodo, micro-
features have
become a benchmark
choice for new native
projects. We've
been able to test
just how much this
architecture can
simplify the upgrading
or partial redesign of
complex applications.

ADOPT
8/19 blips

The growing complexity of
mobile applications poses
a number of challenges,
including the maintainability
of a growing code base,
increasing build times and
difficulties in complying
with the test pyramid.
To address these issues,
companies such as
SoundCloud and JustEat have
popularized micro-feature
architecture, which divides
the monolith into smaller,
more specialized modules.

This architecture is composed
of four types of modules:

• Main application:
coordinates the
application's various
functions.

• Functionality modules:
manage visual
components, navigation
and user interaction.

• Business logic
modules: responsible
for domain-specific
services and entities.

• Core modules:
interface with external
functionalities (e.g. API
calls, storage, logs).

The micro-feature
architecture offers significant
advantages: it facilitates
testing of business logic,
reduces build times
thanks to caching, and
enables common code
to be shared when teams
expand, or new products are
developed. This approach
also simplifies upgrades
and partial overhauls of
complex applications.

However, its implementation
requires good domain
expertise for efficient slicing,
a solid understanding
of software architecture
principles, and good initial
design. Tools like Tuist for
iOS* can facilitate this
slicing, improve caching,
and make the transition to
this architecture smoother.

* https://docs.tuist.io/guides/develop/projects/tma-architecture

With Jetpack Compose,
when the parameter of a
composable changes, only
the affected part is updated,
provided the rest is stable. If
a parameter is considered
unstable, the entire view
will be re-rendered even if
its value has not changed.
This can slow down
rendering and increase
the load on the UI thread,
affecting the performance
of complex screens.

A major problem is that
any class originating
from a different module is
considered unstable by the
Compose compiler. Model
classes are often separated
from views to respect the
separation of responsibilities,
and this degrades the
stability of composables. You
can detect these stability
problems with tools such as
the layout inspector or the
compose compiler report1.
To solve this problem, three
main strategies2 were used:

• Wrap the template
class in a stable local
class using the
@Stable annotation.

• Map the object to a copy
of your model class.

• Add the compose-
compile dependency
to the model layer to
annotate models as
stable, which undermines
the separation
of responsibilities.

Jetpack Compose recently
introduced a stability
configuration file3, a
declarative approach to
managing stability without
modifying code. This file
enables the Compose
compiler to treat listed
classes as stable.

Using this file is faster, more
elegant and less restrictive
than other solutions.
Developers can set up stable
classes in a root file or in
separate files for each module.

53

30 Compose
Stability Configuration File

OUR PERSPECTIVE

At Theodo, we see
great potential
in this solution.
Although it is new
and may have yet
unknown limitations,
we recommend
a gradual
implementation
to ensure project
compatibility.

TRIAL
9/19 blips

1 https://developer.android.com/develop/ui/compose/performance/stability/
2 https://apps.theodo.com/article/jetpack-compose-toute-classe-dun-autre-module-est-elle-instable
3 https://developer.android.com/develop/ui/compose/performance/stability/fix#configuration-file

54 | Tech Radar #3 - November 2024

Kotlin Multiplatform (KMP) tackles
a central problem of modern
development: avoiding code
duplication and the associated
costs, such as the multiplication
of bugs and inconsistencies
between platforms. There
are many cross-platform
solutions on the market, such
as React Native or Flutter. These
solutions are frameworks that
offer a single code base for
creating complete applications
that target multiple platforms.

KMP takes a more flexible
approach. It's not a framework,
but a technology enabling
the Kotlin language to
compile on platforms other
than the JVM used for native
Android development.

This more modular approach
makes KMP ideal for sharing
code between different platforms
(in the form of a library)
without imposing anything.

On iOS, for example, Kotlin code is
compiled and generates a library
that can be used in iOS projects
just like any other library native
to this platform. This flexibility
means that code can be shared
according to need: a simple
function, a specific layer of the
application (network, business,
etc.), a specific feature, or even
the entire code. You only share
what you want to share.

Thanks to KMP, Kotlin benefits from
bi-directional interoperability:
Kotlin code can be compiled
and integrated into native code,
while existing native libraries can
be used in platform-specific
Kotlin code, simplifying the
bridges often needed to exploit
platform-specific functionalities.

The KMP ecosystem is booming,
with Google actively working to
make its native Android libraries
compatible with KMP. On the other
hand, the community is also very

31 Kotlin
Multiplatform (KMP)

TRIAL
10/19 blips

55

active, and the most popular
libraries in the Android
universe are already
compatible with KMP or
very close to it, such as
Room, Retrofit, Coil, Koin, etc.

KMP is now stable on almost
all platforms, including
Android, iOS, Desktop
(Windows, Mac, Linux), and
even the web by transpiling
to JavaScript/TypeScript.
Compilation to WebAssembly
is still in alpha. Compilation
for iOS is currently based
on Objective-C, although
Jetbrains announced the
imminent arrival of KotlinTo-
Swift at Kotlin Conf
2024 in Copenhagen.

KMP is an ideal solution
for sharing code between
different platforms. We
encourage you to give it a
try: adding a KMP module
to an Android project is

straightforward (just a few
configurations in Gradle) and
you can start sharing code.
KMP is perfect for creating
a cross-platform library.
However, if you also want
to share the user interface,
you'll need to use Compose
Multiplatform (CMP), which
is not yet as stable as KMP.

OUR PERSPECTIVE

We encourage you to
start your new Android
projects directly with
KMP to guarantee
their scalability. This
in no way affects
the project itself but
will make it easier
for you to share
code in the future.

56 | Tech Radar #3 - November 2024

In development, it is often
difficult to make code
testable and maintain a
scalable code base due
to the strong coupling of
dependencies. An effective
solution to this problem is
dependency injection, which
allows components to be
decoupled from the code,
thus improving its testability
and maintainability.

Factory* is a modern library
that effectively solves
these problems for Swift
developers. Key benefits
include dependency
injection checking at
compile time, ensuring that
no errors occur at runtime
due to missing or incorrectly
injected dependencies.
Factory also allows the use of
injection scopes, facilitating
the implementation of
true inversion of control
thanks to the Dependency
Injection pattern.

Last year, we recommended
keeping Resolver for projects
using UIKit; however, due
to its depreciation, we now
recommend changing
dependency injection
libraries. For those wishing to
retain a similar syntax and
more functionality, Factory
is an excellent alternative.
Because of the similarity of
its syntax and operation,
migration from Resolver to
Factory is straightforward.
Factory documentation
has also been improved,
offering clear, detailed
instructions for efficient use
in SwiftUI and UIKit projects.

32 Factory

OUR PERSPECTIVE

We recommend
you give Factory a
try in your projects,
as it offers significant
potential for improving
the code quality and
performance of iOS
applications. Although
there are trade-offs,
its benefits warrant
serious evaluation
for future projects.

TRIAL
11/19 blips

* https://github.com/hmlongco/Factory 57

Data storage in mobile
applications is essential to
enhance the user experience
and avoid waiting times. A
caching system makes it
possible to operate in offline-
first mode, displaying cached
data first before refreshing
it via a network call.

SQLite is the standard solution
for relational databases
on mobiles, but it's often
preferable to use an ORM
(Object-Relational Mapping),
a library that interfaces
a database with the rest
of the code, to simplify
interactions and typing.

In the context of Android,
Google has created and
integrated Room into Android
Jetpack, a set of libraries
designed to simplify the
task of developers. With
Room, it's possible to easily
declare the entire database
structure and various queries
in a few lines of Kotlin
code, with annotations.

Room is a mature library, in
existence since 2018, which
benefits from comprehensive
documentation and is
easy to use. It integrates
easily with Kotlin and offers
reactive operations. For
example, when a table is
modified (adding, modifying
or deleting rows), Room
automatically emits a new
value, enabling components
to update themselves via
reactive methods such
as flows (coroutines),
observables (Rx) or Livedata.

What's new in 2024 is that,
since May, Room has been
compatible with Kotlin
Multiplatform. Although
this version is still in alpha,
Google has announced its
commitment to KMP, which
points to a stable release
before the end of the year.

33 Room

OUR PERSPECTIVE

There are serious
competitors to Room,
such as SQL Delight
or Realm, which also
offer compatibility
with KMP. In any
case, Room remains
relatively simple
to use it's a safe
bet for Android
and soon for KMP
too. You can safely
integrate it into your
Android application
and envisage its
use in a future
Multiplatform version.

TRIAL
12/19 blips

58 | Tech Radar #3 - November 2024

In iOS development,
decoupling dependencies
is a recurring challenge
because there is no official
solution. As a result, projects
often have highly coupled
code, making testing and
maintenance difficult.

Swift Dependencies* is a
dependency injection library
designed to address these
issues in Swift applications.
Initially designed for The
Composable Architecture
(TCA), it can also be used
as a standalone library.

Like all dependency
injection mechanisms, it
decouples your code from
its dependencies and allows
mocks to be injected during
testing, making it easier
to test and maintain. It
also provides a method for
injecting stubs for previewing.

This library uses similar
dependency management
mechanisms to SwiftUI's
@Environment, making it easy
to learn. It also includes a
macro to quickly implement
most dependencies, speeding
up their definition and
reducing boilerplate code.

Swift Dependencies is
lightweight and compatible
with incremental adoption,
allowing teams to integrate
at their own pace. However,
this lightness comes at the
cost of certain features,
such as weak injections
and injection scopes, which
must be reimplemented
on a case-by-case basis.

34 Swift
Dependencies

OUR PERSPECTIVE

Swift Dependencies
offers a compelling
way to manage
dependencies,
whether in a TCA
project or as an
incremental migration
in a non-injection
project, although the
lack of important
functionality may be
a barrier to adoption.

TRIAL
13/19 blips

* https://github.com/pointfreeco/swift-dependencies 59

In programming, we
distinguish between business
errors (a password that's
too short) and technical
errors (a failed network
request). Business errors are
normal cases of execution
and must be handled in the
same way as successes,
whereas technical errors are
implementation details.

Historically, Java has used
mandatory checked
exceptions. However, they are
difficult to manage and often
pollute the business code,
making it implementation
dependent. What's more,
they are regularly abused
to handle business errors,
which is costly in terms of
performance because they
generate stacktraces.

Kotlin has responded to this
problem with unchecked
exceptions, making error
handling optional. This
reduces the robustness of
the code but decouples
the business code from the
technical implementation.

Arrow, a library for Kotlin,
provides a functional-
programming-inspired
approach to handling
business errors: Typed Errors.
This distinguishes technical
errors, which are handled
by unchecked exceptions,
from business errors, with
two main methods:

• Explicit method with
Either: a typesimilar
to Result, allowing you
to specify an exact
error type without
inheriting Throwable.

• Implicit method with
Raise: a DSL similar to
Java's checked exceptions
that runs in parallel with
Kotlin's exception system.
Currently implemented
with method extensions,
Raise may use Kotlin's
context parameters in
the future, although these
are still experimental and
planned for Kotlin 2.2.

These methods avoid trycatch
and stacktraces, improving
performance and flexibility.

35 Typed Errors
in Kotlin avec Arrow

OUR PERSPECTIVE

Arrow is a powerful
tool for making Kotlin
code more robust
and readable. Both
are already must-
haves, but Raise,
while promising,
remains limited
by its reliance on
experimental features.

TRIAL
14/19 blips

60 | Tech Radar #3 - November 2024

Gradle configuration is a
must for any Android or
Kotlin multiplatform project,
but it can quickly become
complex if you think outside
the box. This is especially true
for multi-module projects,
multiple flavors, and third-
party plugin integration. This
complexity, often a source
of frustration, requires a
steep learning curve even
for experienced developers.

In response to these
challenges, JetBrains has
developed Amper, a new
build system designed
to simplify configuration.
Intuitive and powerful,
Amper integrates seamlessly
with your existing ecosystem.
It is available as a standalone
version for simple projects
and as a Gradle plugin
for those who need the
Gradle ecosystem.

Amper simplifies the
configuration of Kotlin
multiplatform projects with
one file per module, reducing
Gradle's boilerplate. As a

Gradle plugin, Amper is fully
interoperable and provides
a Gradle fallback for any
unsupported functionality.

Amper supports building
and running JVM, Android,
iOS, desktop and web
applications, as well as
building Kotlin multiplatform
libraries. It also lets you mix
Kotlin, Java and Swift code,
while supporting multi-
module projects and the use
of Compose Multiplatform.

However, Amper is still
in preview and not
recommended for production
projects: it's still young,
with an API that's likely
to change, and missing
features. Nevertheless, this is
a good time to experiment
and provide feedback to
JetBrains, who are known
for listening to their users.

36 Amper

OUR PERSPECTIVE

Amper is specifically
designed to facilitate
the development of
Kotlin multiplatform
projects and
could become an
interesting solution to
explore for developers
who want to simplify
the management
and maintenance
of their builds.

ASSESS
15/19 blips

61

Kotlin Multiplatform (KMP)
allows you to share code
written in Kotlin between
different platforms (Android,
iOS, desktop, web, etc.), but
not to create user interfaces.
So even when you're sharing
business logic, you have to use
native solutions (like Compose
on Android or SwiftUI for iOS).

To remedy this, JetBrains
has developed Compose
Multiplatform (CMP), which
allows you to write a common
UI for all platforms using
Compose's Android-proven
API and Flutter's proven
Skia rendering engine.

CMP is a very promising
technology, but it is
still in its infancy and
stability levels vary from
platform to platform:

• Android - Stable:
natively integrated

• iOS - Beta: although
already stable enough
to use, some limitations
exist, and API changes
are to be expected.

• Desktop - Stable: firmly
integrated on Mac,
Windows and Linux

• Web - Alpha: the JS/TS
transpilation works, but
its performance leaves
something to be desired.
This is why JetBrains has
deprecated it in favor
of its replacement: the
version compiled to
WebAssembly. However,
this version requires very
recent browser versions
and is not yet compatible
with Safari. Both solutions
are detrimental to search
engine optimization
(SEO) and, being still in
the alpha phase, are
particularly unstable
and unsuitable for
a project aimed at
the general public.

37 Compose
Multiplatform

OUR PERSPECTIVE

CMP is very
promising, and we
believe in its potential:
for projects targeting
Android and desktop,
it can be adopted
without hesitation.
For iOS, it's also highly
recommended,
despite its beta status.
For the web, however,
it's still too early to
use CMP in largescale
production.
The rapid progress
made by JetBrains,
and the community
is encouraging, so
we'll be keeping a
close eye on this
technology.

ASSESS
16/19 blips

62 | Tech Radar #3 - November 2024

The @Observable annotation,
introduced with iOS 17,
is a big step forward for
the responsiveness of iOS
applications. However, this
feature is only available in
iOS 17 and later. This poses
a problem for developers
who need to maintain
compatibility with earlier
versions of iOS (iOS 14
through 16), depriving them
of this important feature.

The swift-perception1 library
aims to solve this problem by
backporting @Observable for
iOS versions 14 to 16, allowing
it to be used without requiring
users to update their OS
or create more e-waste.

However, there are a few
drawbacks to using swift
perception. First, while
this solution emulates the
behavior of @Observable, it
is not as well integrated as

the native implementation.
The syntax provided is
similar but not identical to
@Observable: you must wrap
your views in a special
component, which adds noise
to the code. This makes the
code less pleasant to read,
and increases the workload
involved in deleting the library
when it becomes obsolete.

What's more, like all libraries
that use Swift's advanced
macros, swift perception
adds significantly to
compilation time. There
are solutions to mitigate
this, such as precompiling
swift-syntax2, but the core
of the problem remains.

38 Swift
Perception

OUR PERSPECTIVE

In conclusion, swift
perception is a
valuable solution for
developers who want
to use @Observable
on iOS versions prior
to 17. Despite its
drawbacks, it allows
you to prepare your
code for the future
without losing users.
At Theodo, we're
integrating it into our
R&D and recommend
that you try it for
your iOS 14 to 16
compatible projects.

ASSESS
17/19 blips

1 https://github.com/pointfreeco/swift-perception
2 https://github.com/sjavora/swift-syntax-xcframeworks 63

XCTest has been the epitome
of iOS testing since it replaced
OCUnit, but it's notoriously
verbose and inflexible. In
fact, the amount of test code
grows exponentially and is
not easy to read. This has
led developers to look for
alternatives such as Quick.
But while these tools have a
more expressive syntax, they
don't address the problem
of verbosity, and they require
a longer learning curve.

Swift Testing* is a promising
answer to these challenges.
This framework has a syntax
that leverages the power
of macros and annotations
to be more intuitive and
less verbose. For example,
test parameterization
allows developers to
seamlessly run the same
test with different inputs.

In addition, Swift Testing
improves test organization
with a Swift type-based
hierarchy and tag-based
categorization. It also
takes advantage of Swift
6 to improve the safety
of concurrent tests, but
most importantly, to
launch tests in parallel by
default, greatly improving
their execution speed.

Finally, integration with
existing XCTest-based
tests is straightforward,
enabling easy migration
without overhauling the
entire test infrastructure.

39 Swift Testing

OUR PERSPECTIVE

At Theodo, we're
keeping a close eye
on Swift Testing. Its
innovative approach
and features make it
a serious candidate
for future adoption.
However, due to its
newness, it is currently
in the evaluation
phase. We believe
that Swift Testing
has the potential to
become a key tool in
our testing strategy as
it proves its reliability
and adds new
features (such as UI or
performance testing).

ASSESS
18/19 blips

* https://developer.apple.com/documentation/testing/

64 | Tech Radar #3 - November 2024

40 Hot Reload
en SwiftUI

OUR PERSPECTIVE

In spite of the
technical feat, we
don't recommend
using this library
due to its important
drawbacks.
Nevertheless, it
shows that hot
reloading is possible,
and some Apple
engineers might
be inspired by it.

HOLD
19/19 blips

Hot Reload is the ability to
see changes made to a
running application without
waiting for it to recompile. This
feature speeds development
by allowing developers
to see the effects of their
changes in real time and in
a context that is closer to the
real world than previews.

This capability is generally
considered inaccessible
to compiled technologies
like SwiftUI. However, there
is a library that makes this
possible by recompiling
and then injecting the
modified code using very
low-level tools: InjectIII*. This
library also supports UIKit,
Vapor, and even Bezel.

However, using InjectIII
comes with some serious
concessions. The initial
installation can be long and
frustrating. After that, you'll
have to be very patient

in the face of technical
limitations: you may have
to change the path to your
application or compromise
your Mac's security to
enable hot reloading.
What's more, some SwiftUI
features, such as .onChange,
are not compatible
with hot reloading.

The main drawback of this
library, however, is that
it requires you to modify
all components in your
codebase to clear their types
to AnyView. This significant
customization can interfere
with SwiftUI's identification
mechanisms, affecting your
application's animations
and performance during
development. A special
workflow is also required to
remove all traces of the library
in production, otherwise the
security and performance
of the application will
be compromised.

* https://github.com/johnno1962/InjectionIII 6565

General

QUADRANT

13 BLIPS | 6 ADOPT | 4 TRIAL | 2 ASSESS | 1 HOLD

45 46 47

4948
53

52

41

43

44

50

51

42

New No changeMove

This year, BAM, now under the Theodo Apps brand, celebrates its 10th
anniversary, and the landscape of mobile development tools and

methodologies has changed considerably. Our "Transverse" section is
a testament to this. 10 years ago, mobile developers didn't even have
a continuous integration tool worthy of the name. Today, we're talking
about security assessment techniques, a new code editor, and even

tighter integration between server and front-end code.

In previous issues, we've also used this section to share our lean
development practices. This year also marks the release of the book

"Lean Tech Manifesto" written by Fabrice Bernhard and Benoît
CharlesLavauzelle, the founders of Theodo. We continue to share our

Lean Tech best practices with you and invite you to take a closer look at
them by reading this book

BY MAREK KALNIK
CTO & Co-founder

68 | Tech Radar #3 - November 2024

At Theodo, we use a lean
approach with continuous
deployments and chunked
tasks that can be completed in
a day, avoiding batch effects.
Trunk-based development,
where developers frequently
merge their changes into the
main branch, is at the heart of
our process, but remains difficult
to apply in the mobile space
due to store validation cycles.

Feature toggles are essential for
efficient workflow and finegrained
control of applications in
production. There are several
types of feature toggles, including
authorization toggles and A/B
test toggles, which have a specific
business purpose. Release toggles
and operational toggles facilitate
lean development practices.

Release toggles, which are built
directly into code, allow features
under construction to be merged
without being activated for end

users. This facilitates continuous
integration and limits the number
of branches and environments
required for development.
Operational toggles, which can
be configured remotely and
retrieved at runtime, allow a
problematic or obsolete feature
to be quickly disabled without
requiring a new deployment.
This increased flexibility is
critical for responding quickly
to production incidents and
maintaining application stability.

Feature toggles add complexity
to code, especially when they
are interdependent, multiplying
possible test scenarios. To
prevent this from becoming
unmanageable, it's important to
follow certain best practices:

• To avoid the interdependence
of toggles, it is advisable not
to associate several toggles
with the same functionality. In
addition, it is essential to unit-

41 Feature Toggle
ADOPT

1/13 blips

69

test the different paths
that toggled code can
take, to ensure that every
possible combination
works correctly. During
deployment, it's also a
good idea not to change
the state of too many
toggles at the same
time, to limit the risk of
conflicts and regressions.

• To ensure efficient
continuous integration, it's
a good idea to change
a release toggle to an
operational toggle when
a feature is ready to be
deployed. This maintains
the toggle's functional
continuity, facilitating tests,
updates and deployments
without major disruption.

• Documenting toggles
is essential for longterm
maintenance. The lifespan
of toggles can vary from
a few weeks to several

years, and without proper
documentation it can be
difficult for developers
to understand their
use and condition.

• Knowing the status of
toggles in production
is also critical. To this
end, it is important to
version release toggles
to ensure deterministic
application builds. An
interactive operational
toggle console, such as
Firebase Remote Config,
can be used to monitor
and modify toggle
status in real time.

• Finally, choosing an
appropriate update
frequency on the
application side for
dynamic toggles helps
maintain the ability to
respond quickly in the
event of an incident.

OUR PERSPECTIVE

Despite these
complexities, we see
feature toggles as
an essential practice
for maintaining
a fast and agile
development pace,
especially in a mobile
development context,
while ensuring control
of applications
in production.

GENER
AL

How do you know if your
application is performing
well? This is a complex
question, not least because
of the multiplicity of
metrics (FPS, TTI, RAM...)
and the non-determinism
of measurements.

Flashlight, which we are
developing, aims to be the
answer to this question
for Android. Flashlight
gives your app a real-time
performance score, without
any preconfiguration in the
app. So, unlike most existing
tools, even production apps
are supported, regardless
of their technology.

To go one step further,
Flashlight can run your
e2e tests multiple times,
aggregating different metrics
and averaging the results
into a report with an assigned
score. Advantages over other
tools: this score provides
an easy-to-understand
overview of performance,
and the comparison view lets
you assess the impact of a

change in the application.
At its core, Flashlight is open
source. That means you can
take measurements locally with
your own device, but there's
also a cloud version that runs
on a real Android device and
can be integrated with a CI to
get a score on a regular basis.
However, you'll have to provide
it with your own E2E tests
(only Maestro is supported),
which can be tedious.

We use Flashlight as an
indicator in performance
improvement tasks, which
has allowed us to improve the
scrolling fluidity of a React
Native app or reduce the
startup time of a Flutter app.

Flashlight has also allowed
us to avoid performance
regressions in our projects,
for example by detecting
abnormal CPU consumption
after installing an SDK.

Finally, Flashlight is used in
conjunction with Meta to
monitor the performance of
the React Native framework.

70 | Tech Radar #3 - November 2024

42 Flashlight
ADOPT

2/13 blips

OUR PERSPECTIVE

We now recommend
Flashlight as an
"Adopt". We invite
you to use it to
assess the impact
of major technology
decisions, or as an
indicator to help you
with a performance
improvement.

71

43 Generate an
API client

Writing a REST API client by
hand is a time-consuming
task that adds little value
to users. This time, which is
not spent on more creative
or useful pursuits, is often
a source of frustration
for developers. What's
more, the repetitive nature
of this task can lead to
distractions and errors in
translating API specifications
into working code.

Tools such as OpenAPI
Generator* help solve these
problems. This approach
automatically generates
client code from API
specifications without any
manual intervention.

This practice has a
few limitations:

• Generation tools don't
always support the entire
OpenAPI specification,
as in the case of
oneOf/allOf when
generating Dart clients.

• The generated code
may be incorrect or
incomplete, particularly
when the generator
is confronted with
specifications that
are partial or out of
phase with the actual
implementation of
the specified API.

However, this latter limitation
actually paves the way for
better collaboration and
understanding between
development teams. Knowing
that their specifications will
be used to automatically
generate client code,
back-end developers are
encouraged to adhere
strictly to OpenAPI standards
and provide clear, concise
specifications. This improves
the quality of generated code,
documentation, and API
maintainability, and fosters
a culture of collaboration
and quality within teams.

ADOPT
3/13 blips

OUR PERSPECTIVE

We strongly
recommend
automatic API client
generation for any
organization that
wants to streamline
its development
processes and
produce superior
applications. Keep in
mind, however, that
this practice requires
a joint investment
by front-end and
back-end teams.

* https://github.com/OpenAPITools/openapi-generator/

GENER
AL

GENER
AL

72 | Tech Radar #3 - November 2024

Designers are increasingly
incorporating animation into
their interfaces to enhance the
perceived quality of a product
and evoke emotion in users.

However, creating animations
with code is challenging for
mobile developers due to the
complexity of synchronizing
multiple elements and
managing a large amount of
code. The variety of platforms
and frameworks also makes it
difficult to create consistent,
reusable animations.

Another approach is to integrate
animated assets, but most
existing solutions don't allow
direct code interaction with
animations, making it impossible
(or very difficult) to respond
to user interactions and
changes in application state.
Rive is a solution that responds
to these needs by providing a

detailed understanding of the
production process for digital
interfaces, by proposing a unified
production pipeline between
designers and developers.

• On the design side, Rive
eliminates the need to
use multiple tools such as
Illustrator or After Effect. The
editor allows you to design
and animate within the same
interface and facilitates
the transfer of assets.

• On the technical side, Rive
reduces the number of
roundtrips with designers,
eliminates the problem
of corrupted files and
simplifies the integration of
interactive animations with
integrated state machines.
Rive makes collaboration
between designers and
developers smoother,
reduces errors and speeds
up the production process.

44 Rive
ADOPT

4/13 blips

73

Animations created with
Rive can respond to clicks,
movement, or state
changes based on the data
they receive, providing a
dynamic and immersive user
experience. Rive optimizes
its files to be up to 10 times
lighter than Lottie files.
What's more, it limits the
impact on the codebase
by integrating the state
machine directly into the file.

The Rive tool positions itself
as a strong competitor to
other animation creation
solutions thanks to its better
performance and more
developed APIs. Because
the rendering engine and
players are open source,
they offer greater flexibility
and adaptability to meet
specific project needs.

OUR PERSPECTIVE

After more than a
year of use, we now
recommend adopting
Rive to add motion
to your products
through highquality
interactive
animations. The
financial and
technical constraints
mentioned last year
now seem to us to
be largely offset by
the simplification of
production workflows.

GENER
AL

74 | Tech Radar #3 - November 2024

45 Supabase
ADOPT

5/13 blips

We're always looking for
tools that simplify backend
development while providing
robust functionality.
Supabase caught our
eye as an open-source
backendas-a-service (BaaS)
platform that simplifies
the integration of complex
authentication systems
and the management of
backend infrastructure.

Supabase stands out
for its use of PostgreSQL,
which provides flexibility
for complex queries and
data management. Its
authentication system is highly
configurable, supporting
email/passwords, magic links,
and third-party providers.
The quality of its SDKs
ensures smooth development
on multiple platforms, and
its integration with frontend
frameworks improves
developer accessibility.

Supabase makes it possible
to write serverless edge
functions and fine-tune
security management
with Denobased RLS. This
improves performance,
security and scalability,
making it ideal for the needs
of modern applications.
Supabase's self-hosting
capabilities potentially offer
total control over data and
infrastructure, addressing
the need for confidentiality
and customization.

Given these strengths, we
place Supabase in the
Adopt category. Its robust
functionality, ease of use,
and open-source nature
make it an excellent choice
for developers. In addition
to simplifying back-end
development, Supabase
offers advanced features
that are essential for
largescale applications.

OUR PERSPECTIVE

We highly
recommend adopting
Supabase to improve
development
efficiency and
project scalability.

The challenge of ensuring
the consistency of a mobile
application's user interface
is a headache for all
developers. This difficulty is
compounded by the variety
of devices (phones, tablets,
TVs, ...), orientations, and
screen sizes, making manual
regression testing nearly
impossible. Snapshotting UI
provides a modern solution
to these challenges.

UI Snapshotting captures
snapshots of your
application's UI in various
states and stores them
in your codebase. When
a change is made, these
snapshots are compared to
the current UI to detect any
unintentional changes.

We have used Snapshotting
UI on several platforms,
each with a different
level of maturity:

• Flutter: The most
advanced, offering
integrated snapshot
testing with Flutter

Goldens. This does not
require emulators, making
testing extremely fast.

• Native Android: We use
the Paparazzi library,
which captures UI
snapshots and tests
regressions without
using emulators.

• Native iOS: Although the
swift-snapshot-testing
library relies on simulators,
it's fast enough to have
minimal impact on our CI.

• React Native: This
platform lacks a mature
solution. UI snapshot
testing requires
additional configuration
and generally relies on
end-to-end testing on
emulators in conjunction
with jest-imagesnapshot.

A major challenge we've
encountered is the
inconsistency of snapshots
between different CPU
architectures, simulators, and
operating systems, which can
lead to inconsistencies in the CI

environment. To mitigate this,
we can reduce the precision
of the configuration to get
consistent snapshots on the CI.

OUR PERSPECTIVE

Adopting a
snapshotting UI
improves productivity
and ensures a
consistent, reliable
user experience
across updates.
Despite the challenges
of inconsistencies
between environments
and the potential
slowdown of tests
running on emulators,
the benefits far
outweigh these
drawbacks.

75

46 UI Snapshot
testing

ADOPT
6/13 blips

GENER
AL

GENER
AL

In the book Dantotsu Radical
Quality, Sadao Nomura
suggests classifying defects
according to their stage of
detection rather than their
severity or urgency. We
expanded on his ideas in The
Lean Tech Manifesto, suggesting
five stages of defect detection:

A - Detected before
release by the developer

B - Detected before
reaching an internal
customer (code reviews and
continuous integration)

C - Detected before release
(functional reviews)

D - Detected after release
but before receiving a
complaint (continuous
deployment and monitoring)

E - Detected by a user

This approach contrasts
sharply with current industry
practice, where defects are
ranked by severity and only
the most critical are handled
and analyzed. Early detection
and discussion of bugs

has several advantages:

• Bugs caught early are
fresh in the minds of
those who introduced
them, making it easier
for them to explain their
misunderstandings and
learn from their mistakes.

• We avoid situations where
the person who introduced
the bug has already left,
preventing any learning

• Even minor bugs are
often associated with
misunderstandings that
can lead to more serious
problems. Addressing
the causes of small bugs
improves the overall
stability of the application.

At Theodo, we have gradually
expanded our analysis from D
and E bugs to include earlier
detection stages. We have
also focused on reducing
the total number of late
discovered bugs (D and E) to
detect them earlier. We believe
that an increase in early-
stage detections is positive

if it helps reduce the number
of late-stage detections. This
has several advantages:

• The team addresses
obstacles earlier in
the project, improving
overall productivity.

• We reduce the cost
of fixing defects.

• The team generates
knowledge faster.

• The quality of the final
product is improved.

76 | Tech Radar #3 - November 2024

47 Identifying
Defect Detection Stage

TRIAL
7/13 blips

OUR PERSPECTIVE

We recommend this
method but putting it
into practice requires
a good generative
culture. Focusing on
learning and avoiding
blame is essential, and
some teams may not
be ready to fully adopt
this methodology.

77

Performing E2E testing
for mobile applications,
especially for React Native
and Flutter, is tedious. Appium
(and Detox) have their
strengths, but they are often
complex to use, not very
intuitive, and can be difficult
to automate in CI/CD.

Maestro is a new, highly
effective mobile UI testing
framework. While it's not as
comprehensive as Appium,
its minimal setup and quick
implementation make it an
ideal choice for those new
to E2E testing. You can run
your first test in as little as
15 minutes. Maestro also
includes a graphical interface
(Maestro Studio) that lets you
visually select UI elements
and provides suggestions
on how to interact with
those elements in your tests.
What's more, Maestro has
its own built-in cloud service
called Maestro Cloud.

No need to set up simulators,
just upload your application
and tests and they take care
of the rest (reports, parallel
execution, intermittent
error prevention, screen
recordings, logs, etc.).

48 Maestro
TRIAL

8/13 blips

OUR PERSPECTIVE

We're still in the
process of integrating
this tool into certain
projects. Finding the
right configuration for
each of these projects
can be complex. It
remains to be seen
if price, ease of use,
reliability and return
on investment will
make it a wise choice,
but we have high
hopes for Maestro!

GENER
AL

GENER
AL

49 MASVS 2.1
TRIAL

9/13 blips

OUR PERSPECTIVE

At Theodo, we have
adopted MASVS as
our main framework
for securing our
applications. This
standard offers a
comprehensive
and flexible solution,
perfectly adapted
to the diverse needs
of our projects. Its
structured approach
not only facilitates
the implementation
of security controls,
but also strengthens
our collaboration with
security auditors.

In 2024, mobile application
security is more of a priority
than ever, in the face of
constantly evolving threats.
With 7 billion subscriptions
to mobile networks1, and
a third of businesses2

experiencing downtime or
data loss due to compromises
on mobile devices, it's
essential for developers to
integrate security right
from the design phase
of their applications.

OWASP's Mobile Application
Security Verification
Standard (MASVS), a
musthave standard for mobile
application security, has
recently evolved into versions
2.0 and 2.1. MASVS 1.5 consisted
of 84 checkpoints divided
into 7 categories covering
critical areas such as data
storage, authentication, and
network communications.

MASVS version 2.0 has made
significant simplifications,
eliminated redundancies

and adopted standardized
terminology such as OSCAL.
The result is a streamlined
list of 22 control points
that provides a clearer,
more concise approach.

One of the major innovations
in MASVS 2.0 is the
introduction of MAS profiles.
These profiles configure
security tests according to
the specific requirements of
the application, considering
its level of sensitivity.
The associated tests are
described in detail in the
Testing Guide (MASTG),
which provides practical
technical advice for validating
the 22 security checkpoints.

Version 2.1 adds the MASVS-
PRIVACY category to the
standard, which is essential
to help developers comply
with privacy regulations
such as the RGPD.

1 https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
2 https://www.verizon.com/business/resources/executivebriefs/2022-mobile-security-

index-report-executive-summary.pdf78 | Tech Radar #3 - November 2024 79

During feature development,
code review is critical
to ensuring quality and
adherence to team
standards. However,
systematic review can
slow developers down.

To avoid this, Rouan
Wilsenach suggests an
approach called "ship, show,
ask". For every change,
you have three options:

• Ship: create an
advanced branch without
proofreading for minor,
standardized changes.

• Show: create a branch
with a pull-request and
merge without waiting for
proofreading for changes
that are not critical but
require proofreading
later; also, for changes
made in a team (pair or
mob programming).

• Ask: create a branch
with a pull-request and
wait for proof-reading
before merging for critical
or uncertain changes
requiring a colleague's
opinion. We talked
about this practice last
year, and it’s now part
of our standards. We
have reduced the time
spent on code reviews
without reducing the
quality of the code.

Like code review, pair/ mob
programming, ship/show/ask
is a means of communication
between a manager and an
employee. It's up to the Tech
Lead to use this method wisely
to ensure code consistency,
developer progress, and
the team's ability to deliver
features quickly. It's the Tech
Lead's responsibility to define
rules to improve quality.

50 Ship Show Ask
TRIAL

10/13 blips

OUR PERSPECTIVE

"Ship, show, ask"
speeds development
while maintaining
code quality, but an
overall code quality
strategy remains
essential to ensure
robust, consistent
deliverables.

GENER
AL

GENER
AL

80 | Tech Radar #3 - November 2024

Managing a growing technical
team can be challenging. As it
grows, with multiple projects,
different technologies, and
different contexts, it becomes
difficult to ensure that everyone
is focused on what's most
important, and even more
difficult to ensure cross-team
collaboration and knowledge
sharing. Each engineering
manager works hard with his
or her team, while others face
the same problems on the
other side of the open space.

The Weekly Engineering Review
is a ritual that brings together
all the company's engineering
managers and staff engineers.
The principle is strongly inspired
by Amazon's Weekly Business
Review. The goal is to ensure
strong alignment of all technical
leaders around common

performance metrics and to
foster knowledge sharing and
collaboration across teams. The
meeting is structured around a
set of KPIs that aggregate the
performance of all technical
teams in different areas: delivery,
quality, team health... The KPIs
are contextual, so they can and
should evolve over time to reflect
current challenges and align with
the company's business interests.
The weekly aspect allows each
technical leader to maintain a
strong focus on the goals and
helps them align the day-to-
day work of their teams with
them. A manager is assigned to
each KPI to ensure that data is
collected, that the KPI is updated
each week before the meeting,
and to comment on deviations.
Finally, the WER is structured by
a facilitator who ensures that
each KPI is prepared and that

51 Weekly
Engineering Review

ASSESS
11/13 blips

81

the meeting runs smoothly.
At Theodo Apps, we
implemented the WER 6
months ago. We've been
tracking KPIs such as the
number of unresolved bugs,
the cost of each screen
developed in our projects, the
number of CFPs sent by our
engineers to conferences,
the number of inter-team
learning exchanges, and
the number of engineers
who attended bootcamps
or training courses.

After a few months of WER
operation, we have seen a
mixed impact. Some KPIs,
such as training attendance
or the number of defects
analyzed by team leaders
to better understand the
root cause of defects, have
increased. Other KPIs, such as

the number of CFPs sent, have
not changed significantly.

Regardless of its direct
impact, the WER is proving
to be an effective means
of creating a true team
of technical leaders
who previously worked in
silos. Feedback from all
participants has been very
positive about the sense
of team spirit created.

OUR PERSPECTIVE

It's too early to
measure the impact
of the WER on business
performance or to see
tangible improvements
within the teams. We're
still learning how to
execute this ritual
properly, and we see
this practice as an
ongoing experiment
in engineering
management and
leadership until we
stabilize the practice.

GENER
AL

When developing for
Kotlin Multiplatform (KMP),
developers must juggle
between Android Studio
for Kotlin and Xcode
for Swift, which disrupts
workflow, increases context
switching, and can lead to
synchronization conflicts
when editing files in both
editors. Fleet, an IDE from
JetBrains, was created to
facilitate the use of KMP.
It solves these problems
by allowing developers to
manage code from both
languages in a single
IDE without the need to
use other editors.

As a trusted provider of tools
such as IntelliJ and Android
Studio, JetBrains ensures
greater efficiency for cross-
platform developers with Fleet.
The IDE offers features like
auto-completion and code
navigation that surpass even
Xcode. However, Fleet is still
in its early stages and has
several limitations, including a
lack of features and stability
issues. For example, you can't
add plugins, which means
you can't use Copilot, but
JetBrains offers an AI-based
auto-completion alternative.

82 | Tech Radar #3 - November 2024

52 Fleet

OUR PERSPECTIVE

At Theodo, we have
adopted MASVS as
our main framework
for securing our
applications. This
standard offers a
comprehensive
and flexible solution,
perfectly adapted
to the diverse needs
of our projects. Its
structured approach
not only facilitates
the implementation
of security controls,
but also strengthens
our collaboration with
security auditors.

ASSESS
12/13 blips

83

HOLD
13/13 blips

A few years ago, Progressive
Web Apps (PWAs) were all
the rage. Some even went
so far as to predict the
end of mobile apps, and
some case studies made a
compelling case for PWAs.

But while universal apps
have matured, PWAs have
never really taken off. Their
adoption has been hampered
by a lack of support
on iOS, discoverability
issues, difficulty gaining
user trust, and a lack of
functionalities for developers.

The fact that the PWA
Summit has only been held
twice, and not again in
2024, is a sign that PWAs
are losing momentum.
Some players are still using
them successfully, and new
PWAs are being introduced
regularly, but we believe
they no longer represent
a solid mobile strategy.

OUR PERSPECTIVE

The ideas proposed
by PWAs remain
relevant overall, but
in their current state,
universal applications
(whether with React
Native or Flutter) offer
far more benefits while
incorporating some of
the features of PWAs,
such as web manifest
and installability.
We recommend
focusing on universal
applications and
integrating PWA
functionality into
them, rather than
starting with a PWA.

53 PWA-first
Mobile strategyGENER

AL
GENER

AL

84 | Tech Radar #3 - November 2024 85

Other adopted
technologies
Since we launched our Tech Radar in 2022, we have continued to explore and share
innovative technologies and bold technical choices. Throughout the editions, you
feedback and questions have encouraged us to deepen our recommendations for
launching a new project. In this vein, we're pleased to provide you with an update on
our current technological stack, featuring the most commonly used technologies for
launching a project from scratch.

OUR CURRENT STACK

STACK REACT NATIVE
• Expo + EAS
• Typescript + ESLint + Prettier
• Jest + React Native Testing Library
• React Query / Apollo
• Zod
• Jotai / Zustand
• Yarn4
• React Navigation
• Luxon
• Reanimated
• React Native Unistyles
• React Native MMKV
• React Hook Form
• React Native Vision Camera
• For TV : React Tv Space Navigation

STACK FLUTTER
• Riverpod
• GoRouter
• Melos
• Mocktail
• Custom_lint
• Golden Tests
• Rive
• graphql_flutter
• Dio
• Open API Generator
• fast_immutable_collection
• reactive_forms

STACK NATIVE ANDROID
• Kotlin
• Flow + Coroutines
• Jetpack Compose
• Clean Architecture + MVI
• Koin
• Retrofit + KotlinX Serialization
• Jetpack DataStore
• Room
• KtLint
• Slack Compose Linter
• MockK
• MockWebServer
• Paparazzi
• Maestro
• Rive
• Flipper

STACK NATIVE IOS
• Swift
• SwiftUI
• TCA
• swift-navigation
• swift-dependencies
• Tuist
• Combine
• swift-snapshot-testing
• AnyCodable
• XCTest Dynamic Overlay

86 | Tech Radar #3 - November 2024 87

The content committee
OUR CONTRIBUTORS

A BIG THANK TO OUR SHADOW CONTRIBUTORS :

Alexis Ego / Solutions Architect • Antoine Cottineau / Developer • Antoine Doubovetzky / Head of React Native •
Hugues Baratgin / Developer • Julien Calixte / Engineering Manager • Louis Giboin / Developer •
Mathieu Fedrigo / Tech Lead • Micha Dyatlov / Developer • Mo Khazali / Head Of Mobile - Theodo UK •
Paul Briand / Developer • Pierre Zimmermann / Tech Lead • Rémi Bougaud / Lead Designer •
Skander Ellouze / Developer • Thomas Coumau / Developer • Tanguy Moisson / Developer

PIERRE POUPIN
Tech Lead

DENNIS BORDET
Tech lead

LOUIS DACHET
Tech Lead

GUILLAUME DIALLO-BOISGARD
Head of Flutter

LOUIS PRUD'HOMME
Tech lead

NICOLAS ACART
Developer

MAXIME ROUGIEUX
Tech lead

ARTHUR LEVOYER
Head of Native

ALEXANDRE MOUREAUX
App Performance Expert

CYRIL BONACCINI
Staff Engineer

MAREK KALNIK
CTO & Co-founder

MATTHIEU GICQUEL
Staff Engineer

MATTHIEU PERNELLE
Tech Lead

Pauline Gaillard & Ariane de Bélizal / Project Managers

Stéphanie Landrein / Art Direction

DESIGN & PRODUCTION

88 | Tech Radar #3 - November 2024

About Theodo
WHO WE ARE

10
 years

of experience
250

products developed

120

experts

Theodo is a leading international technology consultancy that empowers and supports
innovative companies in designing, developing and deploying ingenious tech products
that transform the lives of their users. To support our clients through every stage of their
product lifecycle, we have established practices specialized on key product technologies
or specific industry sectors.

• Theodo Cloud: Modernizing IT infrastructures
• Theodo Apps: Cross-platform applications
• Theodo Data & IA: Data platforms and AI solutions
• Theodo HealthTech: Health systems and services
• Theodo FinTech: Financial services
• Theodo GovTech: Public sector

KEY FIGURES
• 15 years of existence
• 700 dedicated Theodoers
• Offices in France, the UK, and Morocco
• Clients in 12+ countries

ABOUT THEODO APPS
Theodo Apps is our practice specialized in mobile

and cross-platform applications. We partner with clients
to define and execute their mobile and cross-platform

strategy, designing and developing award-
winning custom applications.

